Biodecontamination For D & D

Problem Definition

 Extensive contamination of concrete structures

1000 facilities in DOE decommissioning

\$ tens of billions decommissioning liabilities in the U.S.

\$21 billion decommissioning liabilities in the U.K.

Current Baseline Technologies

- Are labor intensive
- Are costly
- Pose health risks
- Result in large volumes of waste

A Solution

Technology Alternative Biodecontamination

Advantages to Biodecontamination

- Cost savings
- Waste volume minimization
- Contamination containment
- Utilizes waiting period
- Accesses entire surface regardless of geometry
- Safe, Natural process
- Reduced man entry and radiation exposure

Life Requirements H₂0 Minerals Co₂ S° O₂ O° - 30° C

Aerobic Autotroph non-pathogenic ubiquitous in environment not genetically engineered

NonRadioactive

Radioactive

Small Scale

Large Scale

Natural Analogues

Bureau of Mines

NRC

Lab Testing

SDLR Project

Treatability Study

LDRD Funding FY95

Field Application

Chemical Processing Plant at INEL

NonRadioactive Radioactive

Small Scale

Large Scale

Development Needs

- Define process time requirements
- System optimization
- Expand application
- Design and conduct field demonstration

Program Life Cycle Planning

MILESTONES

- A1 Lab chamber for parallel studies developed
- A2 Required cell density determined
- A3 Moisture/nutrient concentrations optimized (50K)
- A4 Measurement system (rate of progress) developed (75K)

DECISION POINT MILESTONES

- B1 Site selected and field study initiated
- B2 Pre-determined cell density achieved (75K)
- B3 Progress measurement system developed and Implemented (75K)
- B4 Optimum surface removal rate achieved (100K)
- B5 Debris collection demonstrated (220K)

XibneqqA

Potential Applications

- U.S. and international government facilities
- Reactor accidents
- Contaminated concrete reactor surfaces
- Concrete structures contaminated with mine tailings
- Storage ponds, sumps, and trenches
- Fuel handling and storage facilities
- Countless other applications

Contamination Sources and Occurrence

- Uranium, plutonium, and fission products
- Nuclear fuel reprocessing, uranium and plutonium processing, and nuclear reactors
- Four most prominently mentioned DOE facilities:
 - INEL
 - Savannah River
 - Hanford
 - Oak Ridge

Baseline Technologies

- Current technologies include:
 - Shot Blasting
 - Mechanical scabbling
 - Detergent scrubbing
 - Chemical and electrochemical treatment
 - Vacuuming
 - Use of jack hammers
 - Complete dismantling and removal
 - Acid treatment
- Labor requirements
 - Minimum of three laborers

Costs to Perform Baseline Technologies

- Average cost of \$10 \$20 per square foot not including costs for:
 - Radiation control
 - Administration
 - Documentation
- Final costs of \$50 \$60 per square foot
- Decontamination costs rise significantly when entire structure is removed
 - Increased labor
 - Increased waste volume disposal
- Additional costs associated with failed treatment
 - Characterization of missed hot spots
 - Costs to repeat the process

Health Risks Imposed by Baseline Technologies

- Physical methods impose:
 - Increased potential for worker exposure to radioactive contamination
 - Airborne radioactive contamination
 - Increased industrial accident potential

Waste Volume Resulting From Baseline Technologies

 Entire structures are often classified as radioactive waste while radioactivity is actually contained in the outer few mm of surface material

Example: INEL's facility at RWMC structures are cut up into large pieces, classified, and removed as radioactive waste

- Volume increased by removing and mixing with clean concrete
- Secondary waste stream from decontamination solutions

